Total Maximum Daily Load Studies in Receiving Waters in Accomack County

Public Meeting July 18, 2012

Why We Are Here

- 1. To learn about water quality of the stream
- 2. To discuss the Total Maximum
 Daily Load (TMDL) development
- 3. To gather comments and encourage public participation

Outline

- The TMDL process
- Impaired waters and pollutants
- Procedures of pollutant source assessment
- Developed modeling approach
- Preliminary TMDL results
- Comments

The TMDL Process

- DEQ routinely monitors the quality of waters across the state and publishes a list of impaired waters every 2 years
- Virginia is required by law to establish a TMDL for each pollutant causing an impairment
- A TMDL is the amount of a particular pollutant that a stream can receive and still meet Water Quality Standards

Impaired Waters and Pollutants

- Unnamed tributary to Pitts Creek (bacteria and pH)
- Gargathy Creek
 - Upper and lower estuarine portions (dissolved oxygen)
 - Riverine portion (bacteria, benthic)
- Folly Creek
 - Folly Creek-Upper and middle estuarine portion (dissolved oxygen)
 - Unnamed tributary (benthic)
 - Ross Branch (benthic)
- Finney Creek-Upper (bacteria)

Pitts Creek

Gargathy Creek

Folly Creek

Water Quality Criteria

Water Type		Criteria
Class II	Dissolved oxygen	Minimum: 4 mg/l;
(tidal water)		Daily Average: 5 mg/l
Class III		
(freshwater)	E. Coli	Geomean 126 counts/100ml
	(freshwater)	Single Sample Max. 235 counts/100ml
	Enterococci	Geomean 35 counts/100ml
	(salt water)	Single Sample Max. 104 counts/100ml
	рН	6 - 9

Violation Verification Pitts Creek (pH and bacteria)

Violation 33%

Violation 17%

Gargathy Creek DO and bacteria)

Violation =16.2%

Violation =33.3%

Folly Creek (DO)

7-FLL000.40

7-FLL000.40

7-FLL002.46

14.0 12.0 10.0

7-FLL002.46

Data Source: Virginia Department of the Environmental Quality Map Date: August 2011

Finney Creek (bacteria)

Benthic Impairment

Procedures of Pollutant Source Assessment

- Sources
 - Agricultural
 - Humans
 - Pets
 - Livestock
 - Wildlife
- Approach
 - GIS land use data (land use, population, pets, septic systems)
 - Wildlife survey data (animal density, animal habitat)
 - Shoreline survey data
 - Field survey
 - Public meeting
 - Interview

Potential Sources: Wildlife, Livestock, and Pets

Source Assessment

Human Contribution (bacteria and nutrients)

Pitts Creek Loading Estimation

Pitts Creek Loading Estimation

Sub-wa	tershed	1	2	3	4
Hun	nans	185	211	37	85
Do	ogs	43	49	9	20
	Cattle	3	2	<1	1
	Swine	7	7	<1	3
Livestock	Horses	1	1	<1	1
	Sheep	1	<1	<1	<1
	Chicken	29,280	28,132	1,776	11,124
	Ducks	19	21	4	9
Wildlife	Geese	45	51	9	20
vviidille	Deer	50	54	9	21
	Raccoons	70	80	14	32

Manure application - 52 tons/year

	Loading	
Fecal Coliform Source	Counts/day	Loading Percent
Livestock	1.20E+12	15.48%
Wildlife	6.35E+12	82.06%
Human	5.95E+08	0.01%
Pet	1.90E+11	2.45%
Total	7.73E+12	100.00%

Natural Condition of Low pH

- Low pH occurs due to decay of vegetative materials (forest, marsh, wetland) to produce organic acids
- Conditions in a stream that would typically be associated with naturally low pH include slow-moving water, ripple-less waters
- These situations can be compounded by anthropogenic activities (excessive nutrients or pollutants)

Pitts Creek

Very slow-moving water during low flow condition creates a swamp environment

Gargathy Creek Loading Estimation

Gargathy Creek Loading Estimation

		Totals	
Humans		494	
Dogs		139	
Cat**(unused)		157	
	Cattle	12	
	Swine	0	
Livestock	Chickens	134390	
	Horses	7	
	Sheep	6	
	Ducks	9	
	Geese	96	
	Deer	200	
Wildlife	Raccoons	101	
	Muskrat	361	
	Nutria	212	

Category	Source Allocation
Livestock	58.98%
Wildlife	39.49%
Human	0.01%
Pets	1.51%
Total	100.00%

Manure has been applied to about 49 acres of cropland based on CAFO inspection

Folly Creek Loading Estimation

Category		Totals
Human		717
Dog	Dog	
Cat (Data U	nused)	227
	Cattle	17
	Swine	0
Livestock	Chickens	207395
	Horses	9
	Sheep	7
	Ducks	13
	Geese	139
Wildlife	Deer	282
vviidille	Raccoons	129
	Muskrat	446
	Nutria	262

^{*}Chicken total is estimated using land use data

Folly Creek Loading Estimation

Bacteria Sources

Category	Source Allocation
Livestock	25.52%
Wildlife	72.54%
Human	0.02%
Pets	1.92%
Total	100.00%

No manure application!

Septic Tanks

Finney Creek Loading Estimation

Data Source: Virginia Department of the Environmental Quality Map Date: August 2011

Legend: Septic Tanks Watershed Data Source: U.S. Geological Survey. 1999 Map Date: Sep. 2011

Finney Creek

		Finney Creek watershed	Rattrap Creek watershed	Entire watershed
Hu	mans	200	528	728
D	ogs	56	149	205
Cat**	Cat**(unused)		168	231
	Cattle	5	13	18
	Swine	0	0	0
Livestock	Chickens*	64473	198926	263399
	Horses	3	5	8
	Sheep	2	5	7
	Canada Geese/Snow geese	7	19	26
Wildlife	Residential Geese	70	186	141
	Deer 163	163	430	741
	Raccoons	34	81	115
	Muskrat	109	231	340
	Others	0	0	0

Waterbody Name	Source	Percent of Source
Upper	Livestock	9.85%
Finney	Wildlife	88.94%
Creek	Human	0.01%
	Pets	1.20%
	Total	100.00%
Rattrap	Livestock	10.92%
Creek	Wildlife	87.88%
	Human	0.01%
	Pets	1.19%
	Total	100.00%

No manure application in this watershed!

Other Nutrient Sources

- N-fertilizer applied to the cropland is 125
 lb/acre/year
- Nutrient contribution from atmospheric deposition
 - \blacksquare TN =11.48 lb/acre/year
 - \blacksquare TP = 0.71 lb/acre/year

Modeling Approach

- Conduct source analysis
 - Estimate nutrients or bacteria sources
 - Use LSPC to simulate watershed processes
- Use a spatially varying water quality model (EFDC)
 - Simulate in-stream DO processes
 - Simulate bacteria transport and fate

Model Linking Structure

Model Simulation

- Watershed Segmentation
 - Simulation flow, loading using Loading Simulation Program C⁺⁺ (LSPC)
- Receiving water
 - grid generation
 - Simulate pollutant transport using Environmental Fluid Dynamic Computer Code (EFDC)
- Both models are supported by USEPA

Watershed Segmentation and Model Grid

Watershed Segmentation and Model Grid

TMDL Development

- Source analysis
- Use linked watershed and in-stream modeling approach
- Simulate daily nutrients and carbon loadings and bacteria loadings from watershed
- Discharge loads to in-stream model
- Use in-stream water quality model to simulate DO dynamics, and bacteria transport and fate
- Calibrate water quality model
- Compute allowable loads and determine load reduction

Preliminary Results of TMDLs

Stream Flow Calibration

- USGS Stream Gage station (Guy Creek in Nassawadox) 01484800 in 1993 and 1994
- This gate station is the only gage station in Eastern Shore

Example of Water Quality Model Calibration

Gargathy Creek

After Loading Reduction

Folly Creek

Folly Creek

Pitts Creek

Finney Creek

Pitts Creek

Bacteria	TMDL	Ш	LA	+	WLA	+	FA	+	MOS
E. coli	6.39×10^9		6.00×10^9		n/a		6.4×10^{7}		3.2×10^{8}

TMDL =Total Maximum Daily Load

LA = Load Allocation (nonpoint source)

WLA = Wasteload Allocation (point source)

FA =Future Allocation (1% of the TMDL)

MOS = Margin of Safety

Category	Source Allocation	Current Load (Counts/Day)	Load Allocation (Counts/Day)	Required Reduction (%)
Livestock	15.48%	9.89E+09	0	100.00%
Wildlife	82.06%	5.24E+10	6.39E+09	87.81%
Human	0.01%	4.91E+06	0	100.00%
Pets	2.45%	1.57E+09	0	100.00%
Total	100.00%	6.39E+10	6.39E+09	90.00%

Gargathy Creek

Pollutant	Current Load	Allowable Load	Required
	(lb/day)	(lb/day)	Reduction (%)
TN	144.1	95.1	34

Pollutant	Criterion (counts/100ml)	Current Load (counts/day)	Allowable Load (counts/day)	Required Reduction (%)
E. coli	235	4.50×10^{10}	1.80×10^{10}	60

	TMDL	II	LA	+	WLA	+	FA	+	MOS (5%)
Total Nitrogen (lb/day)	95.1		90.4		n/a		n/a		4.7
E. coli (counts)	1.80×10^{10}		1.69×10^{10}				1.8×10^{8}		9.0×10^{8}

FA =Future Allocation (1% of the TMDL)

Cotogowy	Source	Current Load	Load Allocation	Required
Category	Allocation	(Counts/Day)	(Counts/Day)	Reduction
Livestock	58.98%	2.65E+10	2.30E+08	99.14
Wildlife	39.49%	1.78E+10	1.78E+10	0.00
Human	0.01%	4.50E+06	0	100.00
Pets	1.51%	6.80E+08	0	100.00
Total	100.00%	4.50E+10	1.80E+10	60.00

Folly Creek

Pollutant	Current Load	Allowable Load	Required		
	(lb/day)	(lb/day)	Reduction (%)		
TN	201.65	131.1	35.0		

	TMDL	=	LA	+	WLA	+	FA	+	MOS (5%)
Total Nitrogen	131.1		124.5		n/a		n/a		6.6

Where:

TMDL =Total Maximum Daily Load

LA = Load Allocation (nonpoint source)

WI A = Wasteland Allocation (point source)

WLA =Wasteload Allocation (point source)

FA =Future Allocation MOS =Margin of Safety

Finney Creek

Waterbody		TMDL	=	LA	+	WL	+	FA	+	MOS
Name						A				(5%)
Finney	Enterococci	7.97×10^9		7.49×10^9		n/a		7.97×10^7		3.98×10^{8}
Creek										
Rattrap	Enterococci	2.08×10^{10}		1.95×10^{10}		n/a		2.08×10^{8}		1.04×10^9
Creek										

TMDL =Total Maximum Daily Load

LA = Load Allocation (nonpoint source)

WLA = Wasteload Allocation (point source)

FA = Future Allocation (1% of the TMDL)

MOS = Margin of Safety

Waterbody Name	Category	Current Load (Counts/Day)	Load Allocation (Counts/Day)	Reduction Needed (%)
	Livestock	2.67E+09	0.00E+00	100.0%
Upper Finney	Wildlife	2.41E+10	7.97E+09	67.0%
Creek	Human	3.94E+06	0.00E+00	100.0%
	Pets	3.26E+08	0.00E+00	100.0%
	Total	2.71E+10	7.97E+09	70.6%
	Livestock	7.02E+09	0.00E+00	100.0%
Rattrap Creek	Wildlife	5.65E+10	2.08E+10	63.3%
1	Human	9.23E+06	0.00E+00	100.0%
	Pets	7.64E+08	0.00E+00	100.0%
	Total	6.43E+10	2.08E+10	67.7%

Benthic Impairment Analysis

Conduct habitat analysis

- Alter = Channel Alteration
- Banks = Bank Stability
- Bankveg = Bank Vegetative Protection
- Flow = Channel Flow Status
- Cover = Epifaunal Substrate/Available Cover
- Poolvar = Pool Variability
- Poolsub = Pool Substrate Characterization
- Ripveg = Riparian Vegetative Zone Width
- Sediment = Sediment Deposition
- Substrate = Pool Substrate Characterization

Conduct stressor basement

Habitat Degradation

Variable	PC1	PC2
ALTER	0.351	0.052
BANKS	0.345	0.353
BANKVEG	0.115	-0.127
FLOW	0.396	-0.256
POOLSUB	0.362	-0.278
POOLVAR	0.333	0.369
RIPVEG	-0.111	0.043
SEDIMENT	0.398	0.061
SINUOSITY	0.263	0.453
SUBSTRATE	0.132	-0.420
COVER	0.298	-0.437

Gargathy	Folly	Ross
Sediment	Sin	
Flow	Flow	7
Poolsub	Pool	
Alter	Alter	•
Bank	Banl	ζ.

Statistics Analysis

- The ANOVA was applied to the available parameters for the 5 streams. The results show that only two parameters, conductance and alkalinity, are significantly different for the reference sites and impacted sites.
- There are no water quality standards for these 2 parameters and there are a number of factors that can cause change of these parameters.
- No violation for other monitoring parameters.
- More studies are needed.

Questions and Comments

- Source and Loading estimations?
- TMDL calculation ?
- Other questions/comments?

Comment period (July 19-Aug 17)

Contact info:

Jennifer S. Howell

TMDL Projects Coordinator

Virginia Department of Environmental Quality

Tidewater Regional Office

5636 Southern Blvd

Virginia Beach, VA 23462

(757) 518-2111

Emai: Jennifer. Howell@deq.virginia.gov

